non-abelian, supersoluble, monomial
Aliases: C62.8D6, He3⋊5(C4○D4), He3⋊7D4⋊1C2, He3⋊6D4⋊1C2, He3⋊3D4⋊2C2, He3⋊2Q8⋊4C2, C32⋊7D4⋊1S3, C3⋊Dic3.9D6, C32⋊4(C4○D12), C32⋊3(D4⋊2S3), C3.3(D6.3D6), C32⋊C12.8C22, (C2×He3).12C23, He3⋊3C4.6C22, C22.1(C32⋊D6), (C22×He3).8C22, (C2×C6).8S32, C6.86(C2×S32), (C2×C3⋊S3).3D6, C6.S32⋊3C2, He3⋊(C2×C4)⋊2C2, (C2×C3⋊Dic3)⋊4S3, (C2×C32⋊C12)⋊6C2, C2.13(C2×C32⋊D6), (C3×C6).12(C22×S3), (C2×C32⋊C6).2C22, (C2×He3⋊C2).5C22, SmallGroup(432,318)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.8D6
G = < a,b,c,d | a6=b6=1, c6=d2=b3, ab=ba, cac-1=a-1b4, dad-1=a-1b, cbc-1=b-1, bd=db, dcd-1=c5 >
Subgroups: 895 in 156 conjugacy classes, 35 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, Q8, C32, C32, Dic3, C12, D6, C2×C6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, He3, C3×Dic3, C3⋊Dic3, S3×C6, C2×C3⋊S3, C62, C62, C4○D12, D4⋊2S3, C32⋊C6, He3⋊C2, C2×He3, C2×He3, S3×Dic3, C6.D6, D6⋊S3, C3⋊D12, C32⋊2Q8, C6×Dic3, C3×C3⋊D4, C2×C3⋊Dic3, C32⋊7D4, C32⋊C12, He3⋊3C4, C2×C32⋊C6, C2×He3⋊C2, C22×He3, D6.3D6, D6.4D6, He3⋊2Q8, C6.S32, He3⋊(C2×C4), He3⋊3D4, C2×C32⋊C12, He3⋊6D4, He3⋊7D4, C62.8D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, C4○D12, D4⋊2S3, C2×S32, C32⋊D6, D6.3D6, C2×C32⋊D6, C62.8D6
(1 69)(2 14 38 70 30 57)(3 15 39 71 31 58)(4 72)(5 60 33 61 41 17)(6 49 34 62 42 18)(7 63)(8 20 44 64 36 51)(9 21 45 65 25 52)(10 66)(11 54 27 67 47 23)(12 55 28 68 48 24)(13 29)(16 32)(19 35)(22 26)(37 56)(40 59)(43 50)(46 53)
(1 35 37 7 29 43)(2 44 30 8 38 36)(3 25 39 9 31 45)(4 46 32 10 40 26)(5 27 41 11 33 47)(6 48 34 12 42 28)(13 50 69 19 56 63)(14 64 57 20 70 51)(15 52 71 21 58 65)(16 66 59 22 72 53)(17 54 61 23 60 67)(18 68 49 24 62 55)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 65 7 71)(2 70 8 64)(3 63 9 69)(4 68 10 62)(5 61 11 67)(6 66 12 72)(13 31 19 25)(14 36 20 30)(15 29 21 35)(16 34 22 28)(17 27 23 33)(18 32 24 26)(37 52 43 58)(38 57 44 51)(39 50 45 56)(40 55 46 49)(41 60 47 54)(42 53 48 59)
G:=sub<Sym(72)| (1,69)(2,14,38,70,30,57)(3,15,39,71,31,58)(4,72)(5,60,33,61,41,17)(6,49,34,62,42,18)(7,63)(8,20,44,64,36,51)(9,21,45,65,25,52)(10,66)(11,54,27,67,47,23)(12,55,28,68,48,24)(13,29)(16,32)(19,35)(22,26)(37,56)(40,59)(43,50)(46,53), (1,35,37,7,29,43)(2,44,30,8,38,36)(3,25,39,9,31,45)(4,46,32,10,40,26)(5,27,41,11,33,47)(6,48,34,12,42,28)(13,50,69,19,56,63)(14,64,57,20,70,51)(15,52,71,21,58,65)(16,66,59,22,72,53)(17,54,61,23,60,67)(18,68,49,24,62,55), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,65,7,71)(2,70,8,64)(3,63,9,69)(4,68,10,62)(5,61,11,67)(6,66,12,72)(13,31,19,25)(14,36,20,30)(15,29,21,35)(16,34,22,28)(17,27,23,33)(18,32,24,26)(37,52,43,58)(38,57,44,51)(39,50,45,56)(40,55,46,49)(41,60,47,54)(42,53,48,59)>;
G:=Group( (1,69)(2,14,38,70,30,57)(3,15,39,71,31,58)(4,72)(5,60,33,61,41,17)(6,49,34,62,42,18)(7,63)(8,20,44,64,36,51)(9,21,45,65,25,52)(10,66)(11,54,27,67,47,23)(12,55,28,68,48,24)(13,29)(16,32)(19,35)(22,26)(37,56)(40,59)(43,50)(46,53), (1,35,37,7,29,43)(2,44,30,8,38,36)(3,25,39,9,31,45)(4,46,32,10,40,26)(5,27,41,11,33,47)(6,48,34,12,42,28)(13,50,69,19,56,63)(14,64,57,20,70,51)(15,52,71,21,58,65)(16,66,59,22,72,53)(17,54,61,23,60,67)(18,68,49,24,62,55), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,65,7,71)(2,70,8,64)(3,63,9,69)(4,68,10,62)(5,61,11,67)(6,66,12,72)(13,31,19,25)(14,36,20,30)(15,29,21,35)(16,34,22,28)(17,27,23,33)(18,32,24,26)(37,52,43,58)(38,57,44,51)(39,50,45,56)(40,55,46,49)(41,60,47,54)(42,53,48,59) );
G=PermutationGroup([[(1,69),(2,14,38,70,30,57),(3,15,39,71,31,58),(4,72),(5,60,33,61,41,17),(6,49,34,62,42,18),(7,63),(8,20,44,64,36,51),(9,21,45,65,25,52),(10,66),(11,54,27,67,47,23),(12,55,28,68,48,24),(13,29),(16,32),(19,35),(22,26),(37,56),(40,59),(43,50),(46,53)], [(1,35,37,7,29,43),(2,44,30,8,38,36),(3,25,39,9,31,45),(4,46,32,10,40,26),(5,27,41,11,33,47),(6,48,34,12,42,28),(13,50,69,19,56,63),(14,64,57,20,70,51),(15,52,71,21,58,65),(16,66,59,22,72,53),(17,54,61,23,60,67),(18,68,49,24,62,55)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,65,7,71),(2,70,8,64),(3,63,9,69),(4,68,10,62),(5,61,11,67),(6,66,12,72),(13,31,19,25),(14,36,20,30),(15,29,21,35),(16,34,22,28),(17,27,23,33),(18,32,24,26),(37,52,43,58),(38,57,44,51),(39,50,45,56),(40,55,46,49),(41,60,47,54),(42,53,48,59)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 12A | 12B | 12C | 12D | 12E | 12F |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 2 | 18 | 18 | 2 | 6 | 6 | 12 | 9 | 9 | 18 | 18 | 18 | 2 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 36 | 36 | 18 | 18 | 18 | 18 | 36 | 36 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 |
type | + | + | + | + | + | + | + | + | - | + | + | + | + | + | + | - | + | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C62.8D6 | S3 | S3 | D6 | D6 | D6 | C4○D4 | C4○D12 | S32 | D4⋊2S3 | C2×S32 | D6.3D6 | C32⋊D6 | C2×C32⋊D6 |
kernel | C62.8D6 | He3⋊2Q8 | C6.S32 | He3⋊(C2×C4) | He3⋊3D4 | C2×C32⋊C12 | He3⋊6D4 | He3⋊7D4 | C1 | C2×C3⋊Dic3 | C32⋊7D4 | C3⋊Dic3 | C2×C3⋊S3 | C62 | He3 | C32 | C2×C6 | C32 | C6 | C3 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 2 | 2 | 4 | 1 | 1 | 1 | 2 | 2 | 2 |
Matrix representation of C62.8D6 ►in GL10(𝔽13)
1 | 12 | 10 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 12 | 12 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 1 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 11 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 1 | 1 | 12 | 12 | 12 | 0 |
0 | 1 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 12 | 12 | 0 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(10,GF(13))| [1,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,10,10,12,12,0,0,0,0,0,0,3,0,1,0,0,0,0,0,0,0,0,0,0,0,12,0,0,12,12,0,0,0,0,0,0,12,0,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0],[12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,12,12,0,12,0,12,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0],[0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,11,12,12,12,12,12,0,0,0,0,12,1,0,0,0,0],[0,1,0,5,0,0,0,0,0,0,1,0,5,0,0,0,0,0,0,0,0,10,0,12,0,0,0,0,0,0,10,0,12,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,2,1,1,1,1,0,0,0,0,12,1,0,0,0,0] >;
C62.8D6 in GAP, Magma, Sage, TeX
C_6^2._8D_6
% in TeX
G:=Group("C6^2.8D6");
// GroupNames label
G:=SmallGroup(432,318);
// by ID
G=gap.SmallGroup(432,318);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,64,254,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=1,c^6=d^2=b^3,a*b=b*a,c*a*c^-1=a^-1*b^4,d*a*d^-1=a^-1*b,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^5>;
// generators/relations